

Cambridge IGCSE[™]

CANDIDATE NAME				
CENTRE NUMBER		CANDIDATE NUMBER		

CHEMISTRY 0620/31

Paper 3 Theory (Core)

October/November 2023

1 hour 15 minutes

You must answer on the question paper.

No additional materials are needed.

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You may use a calculator.
- You should show all your working and use appropriate units.

INFORMATION

- The total mark for this paper is 80.
- The number of marks for each question or part question is shown in brackets [].
- The Periodic Table is printed in the question paper.

[Total: 6]

1 A list of substances is shown.

ammonium nitrate
carbon monoxide
copper(II) chloride
ethane
ethene
litmus
methane
methyl orange
sodium chloride
sodium sulfate
sulfur dioxide
thymolphthalein

Answer the following questions using only the substances from the list. Each substance may be used once, more than once or not at all.

Give the name of the substance that:

(a)	turns from blue to colourless when an acid is added	
		[1]
(b)	is in many fertilisers	
		[1]
(c)	is a salt which has a negative ion with a charge of 2-	
		[1]
(d)	is a waste gas from digestion in animals	
		[1]
(e)	is a hydrocarbon with a total of five atoms in a molecule	
		[1]
(f)	is a compound of a transition element.	
		[1]

2 (a) Fig. 2.1 shows the distillation apparatus that can be used to separate water from aqueous copper(II) sulfate.

Fig. 2.1

Explain how distillation separates water from aqueous copper(II) sulfate.	
	[2]
	[2

(b) Fig. 2.2 shows a fractionating column for separating petroleum into different hydrocarbon fractions.

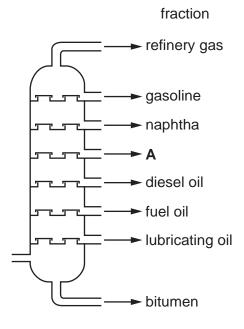


Fig. 2.2

(i) On Fig. 2.2, draw an **X** inside the column to show where the hydrocarbon with the highest viscosity collects. [1]

(ii) Name the fraction labelled A in Fig. 2.2.

[1]

(iii) State the name of the fraction in Fig. 2.2 which has the lowest boiling point.

[1]

(iv) State one use of the bitumen fraction.

[1]

[Total: 6]

3 (a) Table 3.1 shows the average concentrations, in ng/1000 cm³, of air pollutants in four different years.

Table 3.1

concentration of air pollutant in				n ng/1000 cm ³	
year	ammonia	hydrocarbons	oxides of nitrogen	particulates	sulfur dioxide
2019	10.6	12.0	15.3	30.1	20.5
2020	11.2	13.0	21.6	28.2	20.0
2021	14.3	15.2	23.5	26.5	25.0
2022	15.5	9.0	14.0	25.2	18.2

(1)	Name the pollutant that has the lowest concentration in 2019.
	[1]
(ii)	Name the pollutant that shows a continuous decrease in concentration from 2019 to 2022.
	[1]
(iii)	Calculate the average mass, in ng, of sulfur dioxide in a 250 cm ³ sample of polluted air in 2020.
	mass = ng [1]
(b) (i)	State one source of sulfur dioxide in the atmosphere.
	[1]
(ii)	State one adverse effect of sulfur dioxide in the atmosphere.
	[1]

(iii)	Choose the compour	nd used to remove	sulfur diox	ide in flue gas de	sulfurisation.
	Tick (✓) one box.				
		aluminium chlo	oride		
		calcium oxide			
		methane			
		sulfuric acid			[1]
(iv)	Hydrochloric acid rea	acts with sodium s	ulfite.		1.5
	The products are so cobalt(II) chloride pir		ulfur dioxid	e and a liquid w	nich turns anhydrous
	Complete the symbo	l equation for this	reaction.		
	Na ₂ SO	$_3$ +HC $l \rightarrow 2$	NaCl + So	O ₂ +	[2]
(v)	Name the acidified so	olution used to tes	st for sulfur	dioxide gas and s	tate the observations.
	acidified solution				
	observations				[2]
(c) Am	nmonia forms an alkaliı	ne solution in wate	er.		
(i)	Give the formula of the	ne ion that is pres			
(ii)	Choose from the list	the nH value for a			[1]
(11)		•		olution.	
	Draw a circle around				
	pH1	pH4	pH7	pH13	[1]
					[Total: 12]

[4]

4

	mine is a liquid at room temperature.	
(a)	State two general properties of a liquid.	
	1	
	2	
		[2
(b)	Fig. 4.1 shows the physical states of bromine.	
	B	
	solid liquid bromine gas	
	Α	
	Fig. 4.1	
	Name the changes of physical states A and B .	
	A	
	В	
		[2]
		ı—.
(c)	Describe liquid bromine and bromine gas in terms of the arrangemen particles.	
(c)		
(c)	particles.	t and motion of the
(c)	liquid bromine	t and motion of the
(c)	particles. liquid bromine arrangement	t and motion of the
(c)	particles. liquid bromine arrangement motion	t and motion of the
(c)	particles. liquid bromine arrangement motion	t and motion of the
(c)	particles. liquid bromine arrangement motion bromine gas	t and motion of the
(c)	particles. liquid bromine arrangement motion	t and motion of the
(c)	particles. liquid bromine arrangement motion bromine gas	t and motion of the

(d)	A sealed gas syringe contains 80 cm ³ of bromine gas.
	State how decreasing the pressure affects the volume of bromine gas in the gas syringe when the temperature remains constant.
	[1]
	[Total: 9]

- 5 This question is about metals and metal compounds.
 - (a) Table 5.1 shows some properties of some Group I metals.

Table 5.1

metal	melting point in °C	boiling point in °C	observations on reaction with water	solubility of metal hydroxide in g/dm³ at room temperature
sodium 98		883	bubbles form rapidly but no flame	
potassium	63	760		1130
rubidium		686	explodes	1980
caesium	29	669	explodes	3860

Use the information in Table 5.1 to predict:

(i)	the melting point of rubidium	[1]
(ii)	the solubility of sodium hydroxide at room temperature	[1]
(iii)	the observations when potassium reacts with water	
		[1]
(iv)	the physical state of caesium at 20 °C. Give a reason for your answer.	
	physical state	
	reason	
		ΓΟ:

(b)	Iron	is extracted ir	n a blast furnace by reduc	tion of iron(III) oxide,	Fe ₂ O ₃ , with carbon m	onoxide.
	Car	bon monoxide	is produced by the reac	tion of carbon with ca	bon dioxide.	
			C + CO ₂	→ 2CO		
	(i)	Explain how t	this equation shows that	carbon dioxide is redu	iced.	
						[1]
	(ii)	Name the t simultaneous	ype of chemical react ly.	ion where oxidation	and reduction tak	e place
						[1]
(iii)	Calcium carb	onate is added to the bla	st furnace.		
		The calcium of	carbonate undergoes the	rmal decomposition.		
		State the mea	aning of the term thermal	decomposition.		
						[2]
(c)	Stai	inless steel is	an alloy of iron.			
	(i)	Give one rea	son why alloys are more	useful than pure meta	als.	
						[1]
((ii)	Brass is an a	lloy.			
		Choose the d	liagram, A , B , C or D , in	Fig. 5.1 that best show	vs the structure of bra	ass.
Cu)(Z (Zn	Zn (C	Cu(Zn) (Cu(Zn)	Cu Zn Cu	Fe Cu Zn Fe Cu Fe Zn	Fe Zn Fe (Fe) Fe (Fe) Fe	Zn) e)(Zn)
Cu)(Cu)Z	Zn Cu	Zn Cu (Zn) (Zn)	Cu Cu Zn Zn	Zn Fe Fe	Fe
	A	A.	В	С	D	
			Fig.	5.1		

(d) Table 5.2 gives some observations about the reactivity of four metals with dilute hydrochloric acid.

Table 5.2

metal	observations
iron	bubbles form slowly
magnesium	bubbles form very quickly
mercury	no bubbles form
tin	bubbles form very slowly

Put the four metals in order of their reactivity. Put the least reactive metal first.

least reactive —		-	most reactive

[2]

[Total: 13]

- **6** A student investigates the reaction of large pieces of magnesium carbonate with dilute hydrochloric acid at 20 °C. The magnesium carbonate is in excess.
 - (a) Fig. 6.1 shows the volume of carbon dioxide gas released as the reaction proceeds.

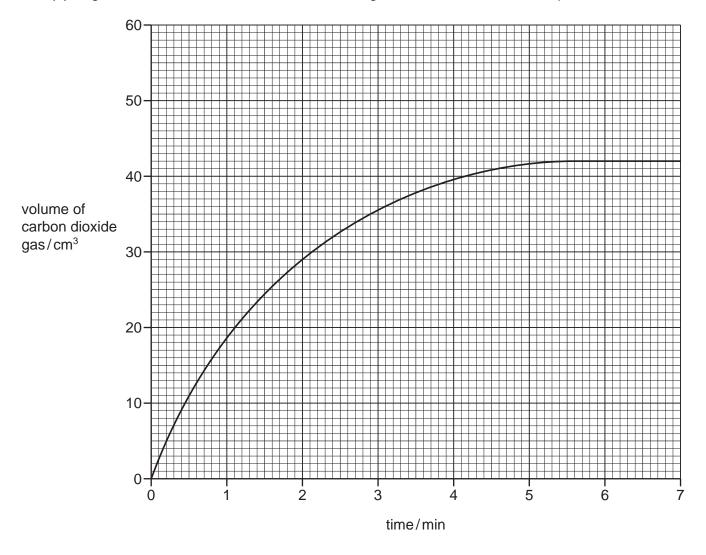


Fig. 6.1

(i) Deduce the volume of carbon dioxide gas released after 2 minutes.

volume of carbon dioxide = cm³ [1]

(ii) The student repeats the experiment using the same volume of hydrochloric acid but with a higher concentration. The magnesium carbonate is still in excess.

All other conditions stay the same.

Draw a line on the grid in Fig. 6.1 to show the volume of carbon dioxide released when hydrochloric acid with a higher concentration is used. [2]

(b)	(i)	The student repeats the experiment using smaller pieces of magnesium carbonate.								
		All other conditions stay the same.								
		Describe how the rate of reaction differs when smaller pieces of magnesium carbonate are used.								
		[1]								
	(ii)	The student repeats the experiment at 10 °C.								
		All other conditions stay the same.								
		Describe how the rate of reaction differs when the temperature is 10 °C.								
		[1]								
(c)		drochloric acid reacts with iron. mplete the word equation for this reaction.								
	hy	rdrochloric acid + iron +								
(d)		ds are used as catalysts in many chemical reactions. te the meaning of the term catalyst.								
	••••	[2]								
	•••••	[2] [Total: 9]								

7 (a) Fig. 7.1 shows the displayed formula of compound S.

Fig. 7.1

- (i) On Fig. 7.1, draw a circle around the carboxylic acid functional group. [1]
- (ii) Deduce the molecular formula of compound S.

.....[1]

- **(b)** Compound **S** can be converted to acrylic acid. The molecular formula of acrylic acid is C₃H₄O₂.
 - (i) Complete Table 7.1 to calculate the relative molecular mass of acrylic acid.

Table 7.1

atom	number of atoms	relative atomic mass	
carbon	3	12	3 × 12 = 36
hydrogen		1	
oxygen		16	

relative molecular mass =[2]

[2]

(ii) Acrylic acid is an unsaturated compound.

Describe a test for an unsaturated compound.

test

observations

((iii)	When left in the air, acrylic acid forms a polymer.									
		State the m	eaning	of the term polyr	ner.						
	(iv)	Poly(ethene	e) is also	o a polymer.							
		Choose from	n the lis	st the type of pol	ymeri	sation that occurs	wher	n poly(ethene) is n	nade.		
		Draw a circl	le arour	nd your chosen a	answe	er.					
		substi	itution	oxidation		neutralisation	ad	ddition	[1]		
(c)		anoic acid is		•	ction	of ethanoic acid w	rith so	dium hydroxide.			
	(ethanoic acid	+	sodium hydroxide	\rightarrow		+		[2]		
(-I)	- 0-			and the state of t	1				[2]		
(d)				onverted to ethai							
						I undergoes comp					
					ar	nd			[2]		
								ſΤα	otal: 131		

Lith	ium bromide is a compound with ionic bonding.	
(a)	State the meaning of the term ionic bond.	
		[2]
(b)	Complete Fig. 8.1 to show:	
	 the electronic configuration of a lithium ion the charge on the ion. 	
	Li	
	Fig. 8.1	[2]
(c)	Deduce the number of protons and neutrons in the bromide ion shown. $$^{79}_{35}\rm{Br}^-$$	
	number of protons	
	number of neutrons	
	Trumber of fleutions	[2]
(d)	Molten lithium bromide is electrolysed using graphite electrodes.	
	State the names of the product at each electrode and give the observations at the posielectrode.	itive
	product at the negative electrode	
	product at the positive electrode	
	observations at the positive electrode	
		 [3]

(e) Fig. 8.2 shows the structure of graphite.

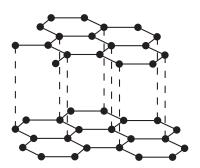


Fig. 8.2

(i)	State the type of bonding in graphite.	
		[1]
(ii)	Explain by referring to Fig. 8.2 why graphite is used as a lubricant.	
		[1]
(iii)	Graphite and diamond are both forms of carbon.	
	State one use of diamond.	
		[1]
	[Total:	12]

18

BLANK PAGE

19

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.

The Periodic Table of Elements

l				۰	_			_			_			_		_	_		_	Son
=	Z H	helium 4	10	Ne	neon 20	18	Ar	argon 40	36	궃	kryptoi 84	54	×e	xenon 131	98	R	radon	118	O	oganess
=			6	ட	fluorine 19	17	Cl	chlorine 35.5	35	B	bromine 80	53	Н	iodine 127	85	Αţ	astatine -	117	<u>⊼</u>	tennessine -
5			80	0	oxygen 16	16	ഗ	sulfur 32	34	Se	selenium 79	52	<u>a</u>	tellurium 128	84	Ъ	polonium –	116	^	livermorium -
>			7	Z	nitrogen 14	15	₾	phosphorus 31	33	As	arsenic 75	51	Sp	antimony 122	83	<u>.</u>	bismuth 209	115	Mc	moscovium -
≥			9	ပ	carbon 12	14	:S	silicon 28	32	Ge	germanium 73	20	Sn	tin 119	82	Pb	lead 207	114	Fl	flerovium -
≡			5	മ	boron 11	13	Αl	aluminium 27	31	Ga	gallium 70	49	In	indium 115	81	l_	thallium 204	113	R	nihonium -
									30	Zu	zinc 65	48	g	cadmium 112	80	Η̈́	mercury 201	112	S	copernicium
									29	D C	copper 64	47	Ag	silver 108	79	Αu	gold 197	111	Rg	roentgenium -
dh									28	z	nickel 59	46	Pd	palladium 106	78	₹	platinum 195	110	Ds	darmstadtium -
5									27	ဝိ	cobalt 59	45	R	rhodium 103	77	Ϊ́	iridium 192	109	Μţ	meitnerium -
	- I	hydrogen 1							26	Fe	iron 56	44	Ru	ruthenium 101	92	Os	osmium 190	108	Hs	hassium
									25	Mn	manganese 55	43	ည	technetium -	75	Re	rhenium 186	107	Bh	bohrium
				loc	ass				24	ပ်	chromium 52	42	Mo	molybdenum 96	74	>	tungsten 184	106	Sg	seaborgium
		Key	atomic number	mic sym	name ative atomic ma				23	>	vanadium 51	41	g	niobium 93	73	<u>⊾</u>	tantalum 181	105	o O	dubnium -
				ato	rela				22	F	titanium 48	40	Zr	zirconium 91	72	Ξ	hafnium 178	104	쪼	rutherfordium -
									21	Sc	scandium 45	39	>	yttrium 89	57-71	lanthanoids		89–103	actinoids	
=			4	Be	beryllium 9	12	Mg	magnesium 24	20	Ca	calcium 40	38	ഗ്	strontium 88	56	Ва	barium 137	88	Ra	radium
_			က	:=	lithium 7	11	Na	sodium 23	19	¥	potassium 39	37	Rb	rubidium 85	22	S	caesium 133	87	Ļ.	francium -
			1	II	II	II	III	II	II	II	II	II	II	II	II	II	1 1 1 1 1 1 1 1 1 1	II	II	1 1 1 1 1 1 1 1 1 1

71 Lu lutetium 175	103 Lr
70 Yb ytterbium 173	No nobelium
69 Tm thulium 169	Md mendelevium
68 Er erbium 167	100 Fm fermium
67 Ho holmium 165	99 ES einsteinium
66 Dy dysprosium 163	98 Cf californium
65 Tb terbium 159	97 BK berkelium
64 Gd gadolinium 157	96 Cm curium
63 Eu europium 152	95 Am americium
62 Sm samarium 150	94 Pu
61 Pm promethium	Np neptunium
60 Nd neodymium 144	92 U uranium 238
Pr praseodymium 141	91 Pa protactinium 231
Ce cerium 140	90 Th thorium 232
57 La lanthanum 139	89 AC actinium

lanthanoids

actinoids

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

© UCLES 2023